sst-0557
sst-0557
Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.
Major developments in this period include the replacement of the geocentric model of the solar system with the heliocentric Copernican model, the laws governing the motion of planetary bodies determined by Johannes Kepler between 1609 and 1619, pioneering work on telescopes and observational astronomy by Galileo Galilei in the 16th and 17th Centuries, and Isaac Newton’s discovery and unification of the laws of motion and universal gravitation that would come to bear his name. Newton also developed calculus, the mathematical study of change, which provided new mathematical methods for solving physical problem.
The discovery of new laws in thermodynamics, chemistry, and electromagnetics resulted from greater research efforts during the Industrial Revolution as energy needs increased. The laws comprising classical physics remain very widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a very close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. However, inaccuracies in classical mechanics for very small objects and very high velocities led to the development of modern physics in the 20th century.
Major developments in this period include the replacement of the geocentric model of the solar system with the heliocentric Copernican model, the laws governing the motion of planetary bodies determined by Johannes Kepler between 1609 and 1619, pioneering work on telescopes and observational astronomy by Galileo Galilei in the 16th and 17th Centuries, and Isaac Newton’s discovery and unification of the laws of motion and universal gravitation that would come to bear his name. Newton also developed calculus, the mathematical study of change, which provided new mathematical methods for solving physical problem.
The discovery of new laws in thermodynamics, chemistry, and electromagnetics resulted from greater research efforts during the Industrial Revolution as energy needs increased. The laws comprising classical physics remain very widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a very close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. However, inaccuracies in classical mechanics for very small objects and very high velocities led to the development of modern physics in the 20th century.
Physics emerged as a distinct science in early modern Europe through experimental and quantitative methods. Key advancements included the heliocentric model by Copernicus, Kepler’s laws of planetary motion, Galileo’s contributions to telescopes and observational astronomy, and Newton’s laws of motion and universal gravitation, along with calculus. The Industrial Revolution further spurred discoveries in thermodynamics and electromagnetics, leading to the evolution of modern physics in the 20th century.
Admin
0
Subscribe
0 Comments
Oldest